Abstract
ABSTRACT Severe wind shear events near airport runways pose serious safety risks and are a growing concern in civil aviation. Identification of severe wind shear risk factors may enhance aviation safety. Although rare, severe wind shear impacts safety by affecting the airspeed, lift, and maneuverability of aircraft. This study presents TabNet, a novel deep learning technique coupled with Bayesian optimization (BO) to predict wind shear severity in the runway vicinity using Doppler LiDAR data from Hong Kong International Airport. To address imbalanced wind shear data, it was first processed by resampling techniques and then used as input to TabNet. The analysis demonstrated that Bayesian-tuned TabNet (BO-TabNet) with SVM-SMOTE-processed data led to better performance compared to other strategies. The TabNet architecture employs the attention mechanism to enable model-specific interpretability. Analysis showed that the most important contributing factor was the summer season, followed by the wind shear encounter location (1 nautical miles from the runway at the departure end). Additionally, a more comprehensive model-agnostic LIME method was used to elucidate the model from a local perspective. By predicting severe wind shear and assessing contributing factors, aviation stakeholders can proactively manage and mitigate the associated risks, leading to safer and more efficient operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.