Abstract

In civil aviation, severe weather conditions such as strong wind shear, crosswinds, and thunderstorms near airport runways often compel pilots to abort landings to ensure flight safety. While aborted landings due to wind shear are not common, they occur under specific environmental and situational circumstances. This research aims to accurately predict aircraft aborted landings using three advanced deep learning techniques: the conventional deep neural network (DNN), the deep and cross network (DCN), and the wide and deep network (WDN). These models are supplemented by various data augmentation methods, including the Synthetic Minority Over-Sampling Technique (SMOTE), KMeans-SMOTE, and Borderline-SMOTE, to correct the imbalance in pilot report data. Bayesian optimization was utilized to fine-tune the models for optimal predictive accuracy. The effectiveness of these models was assessed through metrics including sensitivity, precision, F1-score, and the Matthew Correlation Coefficient. The Shapley Additive Explanations (SHAP) algorithm was then applied to the most effective models to interpret their results and identify key factors, revealing that the intensity of wind shear, specific runways like 07R, and the vertical distance of wind shear from the runway (within 700 feet above runway level) were significant factors. The results of this research provide valuable insights to civil aviation experts, potentially revolutionizing safety protocols for managing aborted landings under adverse weather conditions, thereby improving overall airport efficiency and safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.