Abstract

In addition to zero-carbon generation, the plummeting cost of renewable energy sources (RES) is enabling the increased use of distributed-generation sources. Although the RES appear to be a cheaper source of energy, without the appropriate design of the RES with a true understanding of the nature of the load, they can be an unreliable and expensive source of energy. Limited research has been aimed at designing small-scale hybrid energy systems for irrigation pumping systems, and these studies did not quantify the water requirement, or in turn the energy required to supply the irrigation water. This paper provides a comprehensive feasibility analysis of an off-grid hybrid renewable energy system for the design of a water-pumping system for irrigation applications in Sudan. A systematic and holistic framework combined with a techno-economic optimization analysis for the planning and design of hybrid renewable energy systems for small-scale irrigation water-pumping systems is presented. Different hybridization cases of solar photovoltaic, wind turbine and battery storage at 12 different sites in Sudan are simulated, evaluated, and compared, considering the crop water requirement for different crops, the borehole depth, and the stochasticity of renewable energy resources. Soil, weather, and climatic data from 12 different sites in Sudan were used for the case studies, with the key aim to find the most robust and reliable solution with the lowest system cost. The results of the case studies suggest that the selection of the system is highly dependent on the cost, the volatility of the wind speed, solar radiation, and the size of the system; at present, hybridization is not the primary option at most of sites, with the exception of two. However, with the reduction in price of wind technology, the possibility of hybrid generation will rise.

Highlights

  • Wind energy tend to be the center point of renewable energy hybridization [1,2]. This is mainly due to the aim of the reduction of greenhouse gas emissions, but the increased penetration of RES is due to the dropping prices of the renewable energy sources

  • As the aim of the paper is to explore the techno-economic feasibility of the hybrid renewable energy system for irrigation applications, the objective function used for the optimization is the Energies 2022, 15, x FOR PEER REVIEW

  • 11, almost all of siteswere have simulated an abundantusing amountthe of wind solar the resources constraints determined by climatic data were adopted

Read more

Summary

Introduction

The drive for renewable energy has intensified the use of renewable energy sources (RES), wind and solar photovoltaic (PV). The use of renewable energy and hybridization is taking new shapes, but PV and wind energy tend to be the center point of renewable energy hybridization [1,2]. This is mainly due to the aim of the reduction of greenhouse gas emissions, but the increased penetration of RES is due to the dropping prices of the renewable energy sources. The technological advancements in the PV [3] and wind generation systems have been formidable.

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call