Abstract
Abstract The objective of this research is to propose a novel framework for assessing the consequences of hazardous events on a water resources system using dynamic resilience. Two types of hazardous events were considered: a severe flood event and an earthquake. Given that one or both hazards have occurred and considering the intensity of those events, the main characteristics of flood dynamic resilience were evaluated. The framework utilizes an artificial neural network (ANN) to estimate dynamic resilience. The ANN was trained using a large, generated dataset that included a wide range of situations, from relatively mild hazards to severe ones. A case study was performed on the Pirot water system (Serbia). Dynamic resilience was derived from the developed system dynamics model alongside the hazardous models implemented. The most extreme hazard combination results in the robustness of 0.04, indicating a combination of an earthquake with a significant magnitude and a flood hydrograph with a low frequency of occurrence. In the case of moderate hazards, the system robustness has a median value of 0.2 and a rapidity median value of 162 h. The ANN's efficacy was quantified using the average relative error metric which equals 2.14% and 1.77% for robustness and rapidity, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.