Abstract
Since 1999, very high spatial resolution satellite data represent the surface of the Earth with more detail. However, information extraction by per pixel multispectral classification techniques proves to be very complex owing to the internal variability increase in land-cover units and to the weakness of spectral resolution. Image segmentation before classification was proposed as an alternative approach, but a large variety of segmentation algorithms were developed during the last 20 years, and a comparison of their implementation on very high spatial resolution images is necessary. In this study, four algorithms from the two main groups of segmentation algorithms (boundarybased and region-based) were evaluated and compared. In order to compare the algorithms, an evaluation of each algorithm was carried out with empirical discrepancy evaluation methods. This evaluation is carried out with a visual segmentation of Ikonos panchromatic images. The results show that the choice of parameters is very important and has a great influence on the segmentation results. The selected boundary-based algorithms are sensitive to the noise or texture. Better results are obtained with regionbased algorithms, but a problem with the transition zones between the contrasted objects can be present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.