Abstract

Platelet rich plasma (PRP) is hemoconcentration with platelets concentration above baseline values and high concentration of many growth factors. The aim of this study was to assess freezing effect on vascular endothelial growth factor (VEGF) release from PRP using two different activation methods to simplify its use in different clinical applications. PRP was prepared using two-centrifugation steps method from 12 qualified blood donors. VEGF concentrations were measured in fresh PRP and after freezing/thawing for one and three weeks with two methods of activation using (i) calcium gluconate and (ii) calcium gluconate and thrombin. Platelets count was significantly increased compared to baseline whole blood values in all fresh and frozen PRP samples (p value was <0.05). No significant difference was found between VEGF concentrations after activating fresh and frozen-thawed PRP samples for one and three weeks by calcium alone or calcium with thrombin, and also no significant difference was found when freezing period was extended from one to three weeks. Our results showed that platelets count does not correlate with variable levels of VEGF. PRP could be prepared once and preserved frozen for at least three weeks for the next treatment sessions and activation with thrombin addition to calcium will not augment the growth factor release.

Highlights

  • Platelet rich plasma (PRP) is a generic term referring to any sample of autologous or allogeneic plasma with platelets concentrations above baseline blood values

  • Platelet concentrations significantly increased after double-spin PRP preparation where mean platelet yield in

  • There is a paucity of data in assessing frozen/thawed PRP platelet counts and growth factors release; our results revealed that the count decreased almost to half the baseline PRP platelets count for the one-week storage samples at −40∘C and did not change when the storage period was extended to three weeks

Read more

Summary

Introduction

Platelet rich plasma (PRP) is a generic term referring to any sample of autologous or allogeneic plasma with platelets concentrations above baseline blood values. PRP has been known as a powerful adhesive and hemostatic agent since the 1970s and as a rich source of autologous growth factors since the 1990s [1, 2]. The use of blood components for nontransfusional purposes started in 1998 [3]. Platelet concentrate component has gained a central role for nontransfusional use. As it is a source of growth factors, it can be used, in both liquid and gel forms, to promote the regeneration of damaged tissues [4]. It is an attractive therapy due to the theoretical reduced risks and side effects compared to those commonly approved traditional commercial drugs [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call