Abstract

Patients with chronic limb threatening ischemia have a risk of undergoing a major amputation within 1 year of nearly 30% with a substantial risk of re-amputation since wound healing is often impaired. Quantitative assessment of regional tissue viability following amputation surgery can identify patients at risk for impaired wound healing. In quantification of regional tissue perfusion, near-infrared (NIR) fluorescence imaging using Indocyanine Green (ICG) seems promising. This pilot study included adult patients undergoing lower extremity amputation surgery due to peripheral artery disease or diabetes mellitus. ICG NIR fluorescence imaging was performed within 5 days following amputation surgery using the Quest Spectrum PlatformⓇ. Following intravenous administration of ICG, the NIR fluorescence intensity of the amputation wound was recorded for 10 minutes. The NIR fluorescence intensity videos were analyzed and if a fluorescence deficit was observed, this region was marked as "low fluorescence." All other regions were marked as "normal fluorescence." Successful ICG NIR fluorescence imaging was performed in 10 patients undergoing a total of 15 amputations. No "low fluorescence" regions were observed in 11 out of 15 amputation wounds. In 10 out of these 11 amputations, no wound healing problems occurred during follow-up. Regions with "low fluorescence" were observed in 4 amputation wounds. Impaired wound healing corresponding to these regions was observed in all wounds and a re-amputation was necessary in 3 out of 4. When observing time-related parameters, regions with low fluorescence had a significantly longer time to maximum intensity (113 seconds vs. 32 seconds, P=0.003) and a significantly lesser decline in outflow after five minutes (80.3% vs. 57.0%, P=0.003). ICG NIR fluorescence imaging was able to predict postoperative skin necrosis in all four cases. Quantitative assessment of regional perfusion remains challenging due toinfluencing factors on the NIR fluorescence intensity signal, including camera angle, camera distance and ICG dosage. This was also observed in this study, contributing to a large variety in fluorescence intensity parameters among patients. To provide surgeons with reliable NIR fluorescence cut-off values for prediction of wound healing, prospective studies on the intra-operative use of this technique are required. The potential prediction of wound healing using ICG NIR fluorescence imaging will have a huge impact on patient mortality, morbidity as well as the burden of amputation surgery on health care.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call