Abstract

Euthanasia agents should rapidly induce death and loss of consciousness without causing pain or distress. Various methods exist for the euthanasia of laboratory animals, and injectable anesthetics, particularly barbiturate derivatives, are widely used due to the rapid onset of unconsciousness induced by these agents. Moreover, pharmaceutical-grade drugs should be used to eliminate undesirable side effects as much as possible. However, in Japan, the sale of pharmaceutical-grade pentobarbital sodium (PB) ended in 2019, and that of secobarbital sodium (SB) ended in 2023, leading to a demand for new pharmaceutical-grade injectable euthanasia drugs. This study evaluates thiamylal sodium (TM), a barbiturate derivative that is available domestically, as a euthanasia agent for mice. The results showed that when administered at dosages of 200 mg/kg or more, TM exhibited effects equivalent to those of PB and SB. In addition, the impact of TM administration on hematological characteristics was examined. In female mice administered TM, decreased blood chloride and calcium levels and increased aspartate aminotransferase and alanine aminotransferase levels, which are markers of liver damage, were observed. These findings suggest that high concentrations of TM may affect renal and liver function. This study revealed that TM is effective as a euthanasia agent at dosages of 200 mg/kg or more. However, considering the potential risks of renal and liver damage due to TM administration, it may be preferable to use alternative euthanasia drugs when these risks could affect the objectives or outcomes of the research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.