Abstract

This study conducts a numerical comparison of the thermal performance of three distinct working fluids (pure water, TiO2, and SiO2 water-based nanofluids) within an evacuated tube solar collector using Computational Fluid Dynamics. The study evaluates thermohydraulic performance alongside global and local entropy generation rates, while considering variations in solar radiation values and inlet mass flow rates. Results indicate that nanofluids demonstrate superior performance under low solar radiation, exhibiting higher outlet temperatures, velocities, thermal efficiency, and exergy efficiency compared to pure water. However, at the higher solar radiation level, the efficiency of SiO2 water-based nanofluid diminishes due to its impact on specific heat. Furthermore, the entropy generation analysis reveals significant reductions with TiO2 water-based nanofluid in all the phenomena considered (up to 79 %). The SiO2 nanofluid performance aligns closely with pure water under high radiation value. This investigation offers valuable insights into the utilization of nanofluids in solar collectors across diverse operating conditions, emphasizing their pivotal role in enhancing overall performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.