Abstract
Abstract We report some fundamental gamma-ray shielding properties and individual transmission factors (TFs) of five distinct glass samples with a nominal composition of xSb2O3·(40 − x)PbO·60B2O3·0.5CuO and (where; 0 ≤ x ≤ 40 mol%). Phy-X/PSD and MCNPX (version 2.7.0) Monte Carlo code are utilized to determine several critical parameters, such as cross-sections, attenuation coefficients, half and tenth value layers, build-up factors, and TFs. A general transmission setup is designed using basic requirements. Accordingly, TFs are evaluated for several medical radioisotopes. Next, the gamma-ray shielding parameters and TFs are assessed together in terms of providing the validity of the findings. Our results showed that there is a positive contribution of increasing Sb2O3 amount in the glass matrix owing its direct effect to the density increment as well. This positive effect on gamma-ray shielding properties is also observed for decreasing mean free path values from S1 to S5 samples. The exposure build-up factor (EBF) and energy absorption build-up factor (EABF) values, increasing the quantity of Sb2O3 supplementation, resulted in a general reduction in EBF and EABF values (i.e., from 0.5 to 40 mfp). When the quantity of Sb2O3 rises from S1 to S5, the collision rate of incoming gamma rays in glass samples increases significantly. The TF figures reveal that S5 showed the least transmission behavior across all the above-mentioned studied glass thicknesses. It can be concluded that increasing the Sb2O3 additive is a beneficial and monotonic technique, when the gamma-ray shielding qualities or TF values must be further enhanced.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.