Abstract
Abstract The paper presents a new dry-dock method for assessing the deformation of submarine hulls using TLS point cloud data and the point cloud spatial expansion method (PCSE). The advantage of the proposed approach is the high-resolution deformation analysis that can be conducted in the case of both the availability and a lack of technical documentation on the submarine hull. The geometry assessment involves two-plane hull symmetry in longitudinal sections of a tested Kobben-class submarine located in Gdynia, Poland. The features of PCSE introduce additional geometrical parameters that are not available in the original point cloud method. The procedure for local fitting of a plane into the expansion eliminates the problem of varying densities of the hull point cloud. Accuracies of several millimetres are achieved and are applicable to multi-temporal monitoring of the deformations of submarine hulls. The assessment of similar deformations is not possible in the original point cloud method, due to the unknown parameters of the orientation and curvature of the convex cylindrical hull surface. The PCSE-based parameterisation presented here enables the creation of alternative quasi-planar point cloud projections to extract new spatial information on the object. The results of this study were verified using theoretical values derived from design data on the Kobben-class submarine, and demonstrated the effectiveness of our method in terms of detecting deformations even without design references. The proposed methodology is uniform, and can be adapted to other symmetrical structures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have