Abstract

The paper presents an assessment of the performances of RANS turbulence models for simulating turbulent swirling can-combustor flows with different inlet swirl intensities (i.e. S=0.4 and S=0.81). The predictions compared against published experimental data reveal that the eddy-viscosity models can not show the central recirculation zone in the case of a weakly swirling flow. However, although they reveal the existence of this region in a strongly swirling flow, they are incapable of predicting its correct size. On the other hand, the Reynolds stress models are able to predict the cor- ner and the central recirculation zones in both flow cases. The predictions of turbulence intensities by using the realizable k-� and the SST k-� are comparable to those of the Reynolds stress closures. The shear stresses are not well predicted by all the tested models. Both the eddy-viscosity and the Reynolds stress closures show relatively less approximation errors in the weakly swirling flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.