Abstract

The stress field in a rotating turbulent internal flow is highly anisotropic. This is true irrespective of whether the axis of rotation is aligned with or normal to the mean flow plane. Consequently, turbulent rotating flow is very difficult to model. This paper attempts to assess the relative merits of three different ways to account for stress anisotropies in a rotating flow. One is to assume an anisotropic stress tensor, another is to model the anisotropy of the dissipation rate tensor, while a third is to solve the stress transport equations directly. Two different near-wall two-equation models and one Reynolds stress closure are considered. All the models tested are asymptotically consistent near the wall. The predictions are compared with measurements and direct numerical simulation data. Calculations of turbulent flows with inlet swirl numbers up to 1.3, with and without a central recirculation, reveal that none of the anisotropic two-equation models tested is capable of replicating the mean velocity field at these swirl numbers. This investigation, therefore, indicates that neither the assumption of anisotropic stress tensor nor that of an anisotropic dissipation rate tensor is sufficient to model flows with medium to high rotation correctly. It is further found that, at very high rotation rates, even the Reynolds stress closure fails to predict accurately the extent of the central recirculation zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.