Abstract

The article deals with the assessment of the performance and competitiveness of a nuclear power plant (NPP) combined with a hydrogen power plant compared with a gas-turbine power plant (GTPP) and a pumped-storage hydroelectric power station (PSPS) to satisfy the peak electrical demand in a power system in terms of the peak electric power prime costs. The structure of installed capacities of various interconnected power systems is shown considering the increase in the capacity levels in the immediate future. The necessity of curtailing the load of the power-generating units during the periods of the nighttime off-peak demand is justified. For this purpose, the efficiency of curtailing the load of the power-generating units of various types is analyzed under variable electric loads. As an example, the power-generating units of an NPP equipped with a VVER-1200 reactor, a 300-MW condensation electric power plant, and a PGU-450 combined-cycle gas turbine are considered. The increase in the electric power prime cost serves as the efficiency criterion. To provide the NPP with the base load, variants of combining the NPP with a hydrogen power plant with steam–hydrogen superheating of the live steam upstream from the high-pressure cylinder of the primary turbine and the high-pressure cylinder of the auxiliary steam turbine accompanied by ejection of the heating reheat steam are presented. The forecasted prices of fuel gas and nuclear fuels, as well as of the nighttime electric power for 2020 and in the long term until 2035, are taken into account. It is shown that the employment of GTPPs results in an additional increase in the expenditures caused by curtailing the load of the NPP at nighttime and appears to be inefficient in some cases. The expenditures on the substituted power are accounted for in comparison with the pumped-storage power station in the hydrogen power plant variant. It is shown that the pumped-storage power stations can compete in the foreseeable future with the hydrogen power plants in terms of peak electric power prime costs at minimum specific capital investments of approximately 660 $/kW. In the long term, due to a considerable increase in the nighttime electricity cost, the pumped-storage power stations will not be able to compete with the hydrogen power plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.