Abstract

This paper is focused on the in vivo release and biocompatibility evaluation in rats of some novel systems entrapping zinc chloride in lipid vesicles. The particles were prepared by zinc chloride immobilization inside lipid vesicles made using phosphatidylcholine, stabilized with 0.5% chitosan solution, and dialyzed for 10 h to achieve a neutral pH. The submicrometric systems were physico-chemically characterized. White Wistar rats, assigned into four groups of six animals each, were treated orally with a single dose, as follows: Group I (control): deionized water 0.3 mL/100 g body weight; Group II (Zn): 2 mg/kg body weight (kbw) zinc chloride; Group III (LV-Zn): 2 mg/kbw zinc chloride in vesicles; Group IV (LVC-Zn): 2 mg/kbw zinc chloride in vesicles stabilized with chitosan. Haematological, biochemical, and immune parameters were assessed after 24 h and 7 days, and then liver fragments were collected for histopathological examination. The use of zinc submicrometric particles—especially those stabilized with chitosan—showed a delayed zinc release in rats. No substantial changes to blood parameters, plasma biochemical tests, serum complement activity, or peripheral neutrophils phagocytic capacity were noted; moreover, the tested substances did not induce liver architectural disturbances. The obtained systems provided a delayed release of zinc, and showed good biocompatibility in rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.