Abstract
The water temperature of lakes is one of their fundamental characteristics, upon which numerous processes in lake ecosystems depend. Therefore, it is crucial to have detailed knowledge about its changes and the factors driving those changes. In this article, a neural network model was developed to examine the impact of meteorological variables on lake water temperature by integrating daily meteorological data with data on interday variations. Neural networks were selected for their ability to model complex, non-linear relationships between variables, often found in environmental data. Among various architectures, the Artificial Neural Network (ANN) was chosen due to its superior performance, achieving an R2 of 0.999, MSE of 0.0352, and MAE of 0.1511 in validation tests. These results significantly outperformed other models such as Multi-Layer Perceptrons (MLPs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM). Two lakes (Lake Mikołajskie and Sławskie) differing in morphometric parameters and located in different physico-geographical regions of Poland were analyzed. Performance metrics for both lakes show that the model is capable of providing accurate water temperature forecasts, effectively capturing the primary patterns in the data, and generalizing well to new datasets. Key variables in both cases turned out to be air temperature, while the response to wind and cloud cover exhibited diverse characteristics, which is a result of the morphometric features and locations of the measurement sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.