Abstract
To improve machining processes concerning the usage of lubricants, knowledge of the thermo-mechanical and thermo-fluid interactions at the cutting zone is of great importance. This study focuses on the description of the convective heat transfer which occurs during circular sawing when the lubricant is provided via an internal coolant supply. The highly complex flow field inside the cavity of the sawing process is separated into two distinct flow forms, an impingement and a channel flow. With the aid of experimental and numerical studies, the heat transfer characteristics of these two flow forms have been examined for water and a lubricant used in the circular sawing process. Studies have been conducted over a wide range of Reynolds numbers (impingement flow: 2×103<Re<17×103, channel flow: 1×103<Re<30×103). Additionally, the variation in the inlet temperature of the fluid, as well as the variation in heating power, has been studied. Overall, the impingement flow yields a significantly higher heat transfer than the channel flow with Nußelt-numbers ranging from 120 to 230, whereas the Nußelt-numbers in the case of the channel flow range from 20 to 160. For both flow forms, the use of the lubricant results in a better heat transfer compared with the usage of water. With the aid of these studies, correlations to describe the heat transfer have been derived. The provided correlations are to be used in a coupled numerical model of the chip formation process which also includes the effects of the heat transfer to the coolant lubricant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.