Abstract
Water mist-based fire-extinguishing systems are gaining acceptance for the protection of ship machinery spaces. The use of simulation tools presents a great potential for taking a performance-based design (PBD) approach to these fire scenarios. The Fire Dynamics Simulator (FDS) is the most frequently used and validated fire modeling software; however, studies of low-pressure water mist fire suppression modeling in ship engine rooms are rare. This paper contributes to the current literature by using the FDS to model a series of fire suppression scenarios defined by the International Maritime Organization (IMO) Circulars, including spray and pool fires with heptane and diesel oil, as well as exposed and obstructed fires. The simulation results are compared to data from full-scale tests conducted at recognized fire testing laboratories. Furthermore, an analysis of both the experimental and model uncertainties is carried out to assess the simulations performance. In general, a good agreement in compartment temperature evolution and fire extinguishing time is found for the modeled fire scenarios. The results support the application of FDS in a PBD approach for the design of water mist fire extinguishing systems for machinery spaces in ships. In this way, designers and engineers could model different machinery volumes and nozzles spacings that differ from those prescribed for a one story square engine room of the IMO, and, thus, predict the evolution of temperatures and extinguishing times for get the authorities approval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.