Abstract

Machining performance is often limited by chatter vibration at the tool-workpiece interface. Chatter is a type of machining self-excited vibration which originates from the variation in cutting forces and the flexibility of the machine tool structure. Machining chatter is an inherently nonlinear phenomenon that is affected by many parameters such as cutting conditions, tool geometry, cutting speed, feed rate, depth of cut, overhang length of tool, clamping condition of workpiece. This study presents experimental approach for investigation of effects of various cutting tool geometry on the onset of chatter. In turning process, measured cutting force signal and triaxial accelerometer signal was used to know the characteristics of chatter vibration. The static and dynamic component of cutting forces reflect onset of chatter vibration. Proper selection of tooling is an important parameter in terms of chatter elimination in machining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call