Abstract

ABSTRACTRelationship between canopy temperature and soil moisture is important for using the potential of canopy temperature as an indicator of crop water stress. A two-year field experiment was carried out during June to September 2016 and 2017 at the Research Station of College of Agriculture, Darab, Shiraz University, Iran, to determine crop water stress index (CWSI) for bur clover. Irrigation regimes including well-watered [Irrigation according to 100% field capacity (FC)], mild water stress (75% FC), severe water stress (50% FC), and most severe water stress (25% FC) were arranged in a randomized complete block design with four replications. In 2016, CWSI values showed an increasing trend from June (0.066 in well-watered) to August (0.821 in most severe water stress) as a result of higher vapor pressure deficit (VPD) and depression in canopy-air temperature differences (Tc-Ta). A similar trend was observed in the second year. In both years, by increase in mean temperature from June to August, Tc-Ta differential increased and the highest monthly average value of CWSI for all treatments was obtained in August. By enhancing water stress, the color grading score decreased sharply (from 6 to 3) and stayed constant (2) for August and September. Also, a negative relationship was observed between CWSI and dry matter production (R2 = 0.88**) and color quality (R2 = 0.94**). It was concluded that mild water stress (75% FC) with mean seasonal CWSI being ranged about 0.198 to 0.294, without any loss in visual color quality might be the best irrigation regime for bur clover production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call