Abstract

The interest on the application of the shot peening process to arrest and/or delay crack growth is rising. The main effect of the shot peening technique is to introduce a residual stress field that increases the working life of mechanical components. In this paper, it is presented the numerical simulation (FEM) of the shot peening process and the effect of introducing a residual stress field. Besides, the consequence of changing the sizes of the impacting ball is analyzed. This work also used the Crack Compliance Method (CCM) for the determination of residual stresses in beams subjected to a numerical simulation of a shot peening process. The numerical results obtained provide a quantitative demonstration of the effect of shot peening on the introduction of residual stresses by using different sizes of impacting balls and assess the efficiency of the CCM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.