Abstract

High cycle fatigue (HCF) performance of turbine engine components has been known for decades to benefit from compressive surface residual stresses introduced through shot peening. However, credit for the fatigue benefits of shot peening has not been taken into account in the design of components. Rather shot peening has been used primarily to safe guard against HCF damage initiation. Recently, laser shock processing (LSP) and low plasticity burnishing (LPB) have been shown to provide spectacular fatigue and damage tolerance improvement by introducing deep (through-thickness) compression in critical areas. Until now, the fatigue benefits of these new surface treatments have been introduced during repair to improve an existing design. The present paper describes a design methodology and testing protocol* to take appropriate credit for the introduction of beneficial residual stresses into a component design to achieve optimal fatigue performance. A detailed design protocol has been developed that relates the introduction of a residual stress distribution using LPB for targeted HCF performance. This design protocol is applied to feature specimens designed to simulate the fatigue conditions at the trailing edge of a 1st stage low pressure compressor vane to provide optimal trailing edge damage tolerance. The use of finite element modeling, linear elastic fracture mechanics, and x-ray diffraction documentation of the residual stress field to develop LPB processing parameters is described. A novel adaptation of the traditional Haigh diagram to estimate the compressive residual stress magnitude and distribution to achieve optimal fatigue performance is described. Fatigue results on vane-edge feature samples are compared with analytical predictions provided by the design methodology. The potential for designing reduced section thickness of structural components leading to weight savings is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.