Abstract

The dimensional accuracy of additively manufactured (3D printed) medical models can be affected by various parameters. Although different methods are used to evaluate the accuracy of additively manufactured models, this study focused on the investigation of the dimensional accuracy of the medical model based the combination of reverse engineering (RE) and additive manufacturing (AM) technologies. Human femur bone was constructed from CT images and manufactured, using Fortus 450mc Industrial material extrusion 3D Printer. The additive manufactured femur bone was subsequently 3D scanned using three distinct non-contact 3D scanners. MeshLab was used for mesh analysis, while VX Elements was used for post-processing of the point cloud. A combination of the VX Inspect environment and MeshLab was used to evaluate the scanning performance. The deviation of the 3D scanned 3D models from the reference mesh was determined using relative metrics and absolute measurements. The scanners reported deviations ranging from −0.375 mm to 0.388 mm, resulting in a total range of approximately 0.763 mm with average root mean square (RMS) deviation of 0.22 mm. The results indicate that the additively manufactured model, as measured by 3D scanning, has a mean deviation with an average range of approximately 0.46 mm and an average mean value of around 0.16 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.