Abstract
The recent transition towards sustainable energy resources, aiming for the decarbonisation of the electrical power sector has gained global and regional importance. Therefore, there is a great need to create roadmaps to efficiently achieve this goal. In this regard, this paper evaluates the spatial and temporal complementarity between solar and wind energy in Algeria for different timescales. To this end, a grid with 0.5° x 0.5° spatial resolution that covers the Algerian territory is created and then representative datasets of wind speed and solar radiation were obtained for each point. The Spearman’s rank correlation coefficient is applied as an index to measure the relationship between the underlying resources. The results of this work indicate the existence of moderate complementarity on daily timescale in the coastal regions. The highest complementarity is observed in the province of Annaba, with a complementarity index equals −0.52. Whereas, the south of the country is characterized by synchronised solar and wind resources. Further analysis reveals that the assessment of complementarity based on power generation or resource potential leads almost to the same results. The relationship analysis shows good concordance with a determination coefficient of 0.98, which means that the components specifications have a low impact on the complementarity index. Additionally, dispersed wind systems show a promising smoothing effect, while less spatial complementarity is observed for solar-solar and solar-wind scenarios. The analysis performed in this paper provides informative guidelines for future investments in Algeria by identifying sites with the highest complementarity between solar and wind resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.