Abstract

BackgroundLand use/cover and management practices are widely known to influence soil organic matter (SOM) quality and quantity. The present study investigated the effect of different land use, i.e., forests viz. mixed forest cover (MFC), Prosopis juliflora (Sw.) DC-dominated forest cover (PFC), and cultivated sites viz. agriculture field (AF), vegetable field (VF), respectively, on soil parameter, microbial activity, and enzymes involved in soil nutrient cycle in a semiarid region of India.ResultsThe results showed a significant reduction (P < 0.05) in soil carbon (SC), soil nitrogen (SN) content (~ 30–80%) and consequently the soil microbial biomass carbon (SMBC) (~ 70–80%), soil basal respiration (SBR), soil substrate-induced respiration (SSIR), and soil enzyme activities (β-glucosidase, acid phosphatase, and dehydrogenase) under cultivated sites in comparison with forest sites. Pearson’s correlation showed that a positive correlation of SC with SMBC, SBR, SSIR (P < 0.01), and enzymatic activities (i.e., β-glucosidase, dehydrogenase) (P < 0.05) may imply the critical role of SC in regulating microbial and enzymatic activity. Also, a positive correlation of soil moisture with urease activity (P < 0.01) was found suggesting it as a significant abiotic factor for soil biological functions. Additionally, based on the PCA analysis, we observed the clustering of SMBC/SC ratio and qCO2 nearby AF.ConclusionOur study suggests that soil microbial parameters (SMBC, SBR, SSIR, SMBC/SC, qCO2) and enzyme activity are key indicators of soil health and fertility. Land use/cover alters the SOM content and soil microbial functions. The management strategies focusing on the conservation of natural forest and minimizing the land disturbances will be effective in preventing soil carbon flux as CO2 and maintaining the SC stock.

Highlights

  • Land use/cover and management practices are widely known to influence soil organic matter (SOM) quality and quantity

  • Similar to the soil carbon (SC), higher soil microbial biomass carbon (SMBC) was estimated under forest as compared with cultivated land uses (Fig. 1c) and followed the trend as mixed forest cover (MFC) > PFC > vegetable field (VF) > agriculture field (AF) (313.54 ± 0.34, 209.98 ± 0.63, 86.57 ± 0.53, and 62.57 ± 0.29, respectively)

  • The SMBC/SC was highest under AF (1.1), followed by VF (0.7), PFC (0.66), and MFC (0.65), respectively (Fig. 2a)

Read more

Summary

Introduction

Land use/cover and management practices are widely known to influence soil organic matter (SOM) quality and quantity. Soil microbes despite comprising a small fraction of the total mass of SOM play a critical role in soil processes, SOM decomposition, nutrient cycling, etc. They are significantly influenced by human interventions involving land conversions (Smith and Paul 1995; Kabiri et al 2016). There has been an increased interest in the studies investigating the effect of conversion of natural forests into farmlands and agricultural management practices on soil microbial community structure and functions (Ye et al 2009; Nielsen and Ball 2015; Goenster et al 2017; Thapa et al 2018; Lacerda-Júnior et al 2019)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.