Abstract

Whole life-cycle bioassays with Chironomus dilutus were performed to evaluate sediment toxicity in Tai Lake, a typical freshwater lake in China. Meanwhile, contaminants of concern were analyzed in sediment. The sediments in Tai Lake showed no acute mortality in 10-day testing to C. dilutus. After chronic exposure to the sediments, however, adverse effects-including decreased survival and sublethal impairments of growth, emergence, and fecundity-were observed at most sites in Tai Lake. A variety of contaminants were detected in sediment with the total concentrations in the range of 504-889ng/g dry weight (dw) for polycyclic aromatic hydrocarbons, 0.56-1.81ng/g dw for polychlorinated biphenyls, 38.6-87.8ng/g dw for polybrominated diphenyl ethers, 8.34-14.2ng/g dw for organochlorine pesticides, 1.27-2.95ng/g dw for organophosphate pesticides, 0.11-0.21ng/g dw for pyrethroid pesticides, and 332-609µg/g dw for metals. Finally, a canonical correlation analysis was applied to link chronic sediment toxicity to the toxic units of individual contaminants. Results suggested that two pesticides (hexachlorocyclohexane and chlorpyrifos) and two metals (chromium and nickel) in sediments from Tai Lake were the potential contributors to the noted toxicity in C. dilutus in the life-cycle toxicity testing. In conclusion, acute bioassays with the benthos were not sensitive enough to assess sediment toxicity in freshwater lakes in China, and it is desirable to integrate chronic toxicity testing with chemical analysis to better understand sediment risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.