Abstract
Real-time monitoring of dosimetry is critical to mitigating the constraints of offline measurements. To address this need, the use of the Scanning Mobility Particle Sizer (SMPS) to estimate the dose delivered through the Dosimetric Aerosol in Vitro Inhalation Device (DAVID) was assessed. CuO nanoparticles suspended in ethanol at different concentrations (0.01–10 mg/mL) were aerosolized using a Collison nebulizer and diluted with air at a ratio of either 1:3 (setup 1) or 1:18 (setup 2). From the aerosol volume concentrations measured by the SMPS, density of CuO (6.4 g/cm3), collection time (5–30 min), flow rate (0.5 LPM) and deposition area (0.28 cm2), the mass doses (DoseSMPS) were observed to increase exponentially over time and ranged from 0.02 ± 0.001 to 84.75 ± 3.49 μg/cm2. The doses calculated from the Cu concentrations determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) (DoseICP) also increased exponentially over time (0.01 ± 0.01–97.25 ± 1.30 μg/cm2). Regression analysis between DoseICP and DoseSMPS showed R2 ≥ 0.90 for 0.1–10 mg/mL. As demonstrated, the SMPS can be used to monitor the delivered dose in real-time, and controlled delivery of mass doses with a 226-fold range can be attained in ≤30 min in DAVID by adjusting the nebulizer concentration, dilution air and time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Toxicology in vitro : an international journal published in association with BIBRA
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.