Abstract

Speckle-tracking echocardiography was used to assess retrograde coronary venous infusion of mesenchymal stem cells (MSCs) combined with basic fibroblast growth factor (bFGF) in a canine model of acute myocardial infarction (AMI). AMI was induced by ligation of the left anterior descending coronary artery. Coronary venous retroperfusion was performed at 1 wk after AMI. Twenty-eight animals were randomized into four groups: saline, bFGF+saline, saline+MSCs and bFGF+MSCs. Echocardiography was performed before AMI, at 7 d post-AMI and 40 d after retroperfusion. Apoptotic cardiomyocytes in the border zone of the ischemic region were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling. Vascular endothelial growth factor and factor VIII concentrations were measured by western blotting. The left ventricular end-systolic volume increased significantly, whereas the left ventricular ejection fraction and global and segmental strain values decreased significantly after AMI. After retroperfusion, the strain values of the infarct zone, but not conventional echocardiographic parameters, were significantly different between control and bFGF+MSC groups. Cardiomyocyte apoptosis decreased, whereas vascular endothelial growth factor and factor VIII concentrations were higher in the bFGF+MSC, bFGF and MSC groups. Cardiomyocyte apoptosis was well correlated with the strain values. Although retrograde coronary venous infusion of bFGF and MSCs promoted neo-vascularization of the infarcted myocardium and inhibited apoptosis, there was only a slight strain improvement without a substantial increase in global cardiac functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call