Abstract

IntroductionAssessment of respiratory system compliance (Crs) can be used for individual optimization of positive end-expiratory pressure (PEEP). However, in patients with spontaneous breathing activity, the conventional methods for Crs measurement are inaccurate because of the variable muscular pressure of the patient. We hypothesized that a PEEP wave maneuver, analyzed with electrical impedance tomography (EIT), might be suitable for global and regional assessment of Crs during assisted spontaneous breathing.MethodsAfter approval of the local ethics committee, we performed a pilot clinical study in 18 mechanically ventilated patients (61 ± 16 years (mean ± standard deviation)) who were suitable for weaning with pressure support ventilation (PSV). For the PEEP wave, PEEP was elevated by 1 cmH2O after every fifth breath during PSV. This was repeated five times, until a total PEEP increase of 5 cmH2O was reached. Subsequently, PEEP was reduced in steps of 1 cmH2O in the same manner until the original PEEP level was reached. Crs was calculated using EIT from the global, ventral and dorsal lung regions of interest. For reference measurements, all patients were also examined during controlled mechanical ventilation (CMV) with a low-flow pressure-volume maneuver. Global and regional Crs(low-flow) was calculated as the slope of the pressure-volume loop between the pressure that corresponded to the selected PEEP and PEEP +5 cmH2O. For additional reference, Crs during CMV (Crs(CMV)) was calculated as expired tidal volume divided by the difference between airway plateau pressure and PEEP.ResultsRespiratory system compliance calculated from the PEEP wave (Crs(PEEP wave)) correlated closely with both reference measurements (r = 0.79 for Crs(low-flow) and r = 0.71 for Crs(CMV)). No significant difference was observed between the mean Crs(PEEP wave) and the mean Crs(low-flow). However, a significant bias of +17.1 ml/cmH2O was observed between Crs(PEEP wave) and Crs(CMV).ConclusionAnalyzing a PEEP wave maneuver with EIT allows calculation of global and regional Crs during assisted spontaneous breathing. In mechanically ventilated patients with spontaneous breathing activity, this method might be used for assessment of the global and regional mechanical properties of the respiratory system.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-014-0679-6) contains supplementary material, which is available to authorized users.

Highlights

  • Assessment of respiratory system compliance (Crs) can be used for individual optimization of positive end-expiratory pressure (PEEP)

  • Respiratory system compliance calculated from the PEEP wave (Crs(PEEP wave)) correlated closely with both reference measurements (r = 0.79 for Crs(low-flow) and r = 0.71 for Crs(CMV))

  • In mechanically ventilated patients with spontaneous breathing activity, this method might be used for assessment of the global and regional mechanical properties of the respiratory system

Read more

Summary

Introduction

Assessment of respiratory system compliance (Crs) can be used for individual optimization of positive end-expiratory pressure (PEEP). We hypothesized that a PEEP wave maneuver, analyzed with electrical impedance tomography (EIT), might be suitable for global and regional assessment of Crs during assisted spontaneous breathing. One strategy that may lead to a PEEP setting that maintains lung recruitment without excessive overdistension is to set PEEP 2 cmH2O above the lower inflection point of a static or quasi-static (“lowflow”) pressure-volume loop [7]. This results in ventilation in the area of the pressure-volume loop that is associated with the highest respiratory system compliance (Crs).

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.