Abstract
ABSTRACT Reverse micro electro-discharge machining (RµEDM) is a promising and cost-effective technology for fabricating unconventional shaped single and arrayed micro-pins of high aspect ratio. However, dimensional inaccuracies, poor surface finish and long machining time are of great concern. An experiment-based detailed investigation of process parameters for analyzing various machining responses has been performed in this article. Taguchi’s L16 orthogonal array design of experiments has been used to frame out the experimental runs. Discharge voltage, capacitance and feed rate have been considered as process parameters whereas, material removal rate, taper root angle, surface roughness and machining time as responses for the fabrication of a single micro-pin. Additionally, the feasibility of a novel high-pressure suction flushing technology implemented for RµEDM has been demonstrated. The performance of this technology is verified for better surface quality and lesser machining time. It is observed that by using the proposed suction technology, along with the suitable parametric settings, the micromachining time significantly improved (~20%) while fabricating an arrayed micro-pins in elliptical cross-sections profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.