Abstract

The placenta maintains the balance between nutrition and growth control of the fetus through selective and regulated supply of macronutrients such as carbohydrates, proteins, lipids, and critical micronutrients. Perturbations in the balanced supply of nutrients as found in gestational diseases and altered fetal development have been associated with changes in amino acid transport proteins, such as the System L amino acid heterodimeric exchangers LAT1/SLC7A5 and LAT2/SLC7A8. Syncytiotrophoblasts (STB) form the crucial cell layer at the placental barrier coordinating the transfer of essential amino acids such as leucine from the maternal to the fetal circulation. The System L-mediated leucine transport across the placental barrier is a Na+-independent process against a counter-directed gradient, maintained by a tightly regulated interplay between accumulative transporters, exchangers, and facilitators.The two methods described here allow to standardize and characterize the uptake kinetics of leucine in conventionally cultured BeWo cells and the transfer of leucine across the placental cell barrier using a BeWo monolayer in the Transwell® system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.