Abstract

Following treatment, amounts of pesticides can reach the atmosphere because of spray drift, volatilization from soil or plants, and/or wind erosion. Monitoring and risk assessment of air contamination by pesticides is a recent issue and more insights on pesticide transfer to atmosphere are needed. Thus, the objective of this work was to better understand and assess pesticides emission potential to air through volatilization. The TyPol tool was used to explore the relationships between the global, soil and plant volatilization potentials of 178 pesticides, and their molecular properties. The outputs of TyPol were then compared to atmospheric pesticide concentrations monitored in various French regions. TyPol was able to discriminate pesticides that were observed in air from those that were not. Clustering considering parameters driving the emission potential from soil (sorption characteristics) or plant (lipophilic properties), in addition to vapor pressure, allowed better discrimination of the pesticides than clustering considering all parameters for the global emission potential. Pesticides with high volatilization potential have high total energy, and low molecular weight, molecular connectivity indices and polarizability. TyPol helped better understand the volatilization potential of pesticides. It can be used as a first step to assess the risk of air contamination by pesticides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.