Abstract

BackgroundOptic nerve trauma caused by crush injury is frequently used for investigating experimental treatments that protect retinal ganglion cells (RGCs) and induce axonal regrowth. Retaining outer retinal light responses is essential for therapeutic rescue of RGCs after injury. However, whether optic nerve crush also damages the structure or function of photoreceptors has not been systematically investigated. In this study, we investigated whether outer retinal thickness and visual function are altered by optic nerve crush in the mouse.MethodsWildtype mice underwent optic nerve crush and intravitreal injection of a control solution in one eye with the fellow eye remaining uninjured. Two weeks after injury, the thickness of the ganglion cell region (GCL to IPL) and photoreceptor layer (bottom of the OPL to top of the RPE) were measured using OCT. Retinal function was assessed using flash ERGs. Immunodetection of RGCs was performed on retinal cryosections and RGCs and ONL nuclei rows were counted. Multiple comparison analyses were conducted using Analysis of Variance (ANOVA) with Tukey’s post hoc test and P values less than 0.05 were considered statistically significant.ResultsOptic nerve crush injury induced RGC death as expected, demonstrated by thinning of the ganglion cell region and RGC loss. In contrast, outer retinal thickness, photopic and scotopic a-wave and b-wave amplitudes and photoreceptor nuclei counts, were equivalent between injured and uninjured eyes.ConclusionsSecondary degeneration of the outer retina was not detected after optic nerve injury in the presence of significant RGC death, suggesting that the retina has the capacity to compartmentalize damage. These findings also indicate that experimental treatments to preserve the GCL and rescue vision using this optic nerve injury model would not require additional strategies to preserve the ONL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.