Abstract
AbstractSoils are a source of atmospheric nitrogen oxides (NOx), especially in regions with significant cropland where nitrogen (N) fertilizers are used to enhance crop yields. The magnitude of soil NOx emissions, however, varies substantially by region, depending on the local land use pattern and management activities. We estimated soil NOx emissions in California based on the DeNitrification‐DeComposition (DNDC) biogeochemical model, linked to a detailed spatial‐temporal differentiated California‐specific database. The DNDC‐generated surface fluxes were used in the Community Multiscale Air Quality (CMAQ) model to evaluate impacts of soil NOx emissions on formation of ambient particulate (PM2.5) nitrate in the San Joaquin Valley (SJV) where cropland is the dominant land use. The DNDC‐generated soil NOx emissions contribute approximately 1.1% of total anthropogenic NOx emissions in California, at an emission rate of roughly 24 t day−1 (as NO2) statewide and 9 t day−1 in the SJV. Cropland is the dominant source of soil NOx emissions in California, contributing nearly 60% of statewide soil NOx emissions, driven principally by fertilizer use. The PM2.5 nitrate concentrations simulated by CMAQ using the DNDC‐generated soil NOx emissions are compatible with those observed in the SJV, suggesting that soil NOx emissions have limited impacts on PM2.5 nitrate formation in the atmosphere. Our emission and air quality modeling results are further supported by long‐term ambient NOx‐to‐carbon monoxide (CO) and satellite NO2 data analyses in the SJV, which showed diurnal, monthly, and annual trends consistent with characteristics of NOx sources dominated by traffic combustion in both urban and agricultural regions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have