Abstract

Plant growth-promoting bacteria with the ability to tolerate heavy metals have importance both in sustainable agriculture and phytoremediation. The present study reports on the isolation and characterization of mineral phosphate-solubilizing (MPS) bacteria associated with the Achyranthes aspera L. plant (prickly chaff, flower plant). Out of 35 bacterial isolates, 6 isolates, namely RS7, RP23, EPR1, RS5, RP11 and RP19, with high MPS activity were selected and subjected to the assessment of MPS activity under various stress conditions, viz. ZnSO(4) (0.30-1.5 M), NaCl and temperature. MPS activity by the selected isolates was observed at concentrations of as high as >1.2 M ZnSO(4). Significant improvement in plant growth was observed on bacterization of seeds (pearl millet) with all of the six selected isolates. Plant growth was measured in terms of root length, shoot length, fresh weight and % increase in root biomass. The molecular diversity among the phosphate-solubilizing bacteria was studied employing enterobacterial repetitive intergenic sequence-PCR (ERIC-PCR). Representative strains from each ERIC type were identified, on the basis of a partial sequence of the 16S rRNA gene, as members of the genera Pseudomonas, Citrobacter, Acinetobacter, Serratia, and Enterobacter. Among all the isolates, RP19 was the best in terms of phosphate-solubizing activity and its response to various stresses. The ability of RP19 and other isolates to exhibit MPS activity at high ZnSO(4) concentrations suggests their potential as efficient biofertilizer for growing plants in metal (ZnSO(4))-contaminated soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.