Abstract

The direct and indirect control methods are commonly used for maximum power point tracker (MPPT) of photovoltaic (PV) systems. Due to the absence of the literature that assess their performance in a comprehensive way, this work attempts to analyze the effectiveness of both control methods for the perturb and observe (P&O) MPPT algorithm. The MATLAB/Simulink simulation is verified experimentally using a PV array simulator and the dSPACE DS1104 DSP board driving a buck-boost converter. The results show that the indirect method exhibits lower steady-state oscillation and is less sensitive to rapid irradiance change and load variations. It increases the steady-state efficiency by 1.6%. Furthermore, under irradiance and load step changes, the transient efficiency increases by 29% and 30%, respectively. Based on these findings, it is envisaged that the indirect method is more suitable to be used as the controller in conjunction with the MPPT algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.