Abstract

Hypersonic Inflatable Aerodynamic Decelerator (HIAD) has shown its great potential for future planetary explorations. However, the HIAD surface deflections could both promote boundary-layer transition early and augment heating levels sharply, which poses challenges for survivability of a Thermal Protection System (TPS). The goal of this work is to assess different transition models for the prediction of hypersonic transitional flows over scalloping deformed HIAD surface and to seek the critical factor for their capabilities to provide a reference for the application and advancement. Three representative transition models are considered: γ-Reθ, k-ω-γ and kT-kL-ω. The results show that the undulating surface causes flow separations and reattachments in valleys and strong crossflow along the leeward. k-ω-γ model can correctly predict both the shapes and locations of the transition onsets. The transition zone predicted by γ-Reθ model is much small, while kT-kL-ω is incapable of transition prediction for such a complex and irregular configuration. Moreover, this study reveals that the crossflow instability plays a dominant role in the transition. The crossflow Reynolds number Recf, whose distributions are approximately consistent with the transition zone, could be a feasible crossflow strength indicator for the transition onsets on the undulating surface. Once k-ω-γ model excludes effects of crossflow instability, it predicts incorrect transition results for the deformed surface of HIAD. Besides, a detailed analysis shows that both the crossflow instability mode and the first disturbance mode in valleys are the major contributors to the transition on the leeward surface. Near the leeward ray, the transition is mainly determined by the first disturbance mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.