Abstract

Development of electrophysiological means to assess the medial olivocochlear (MOC) system in humans is important to further our understanding of the function of that system and for the refinement and validation of psychoacoustical and otoacoustic emission methods which are thought to probe the MOC. Based on measurements in anesthetized animals it has been hypothesized that the MOC-reflex (MOCR) can enhance the response to signals in noise, and several lines of evidence support such a role in humans. A difficulty in these studies is the isolation of efferent effects. Efferent activation can be triggered by acoustic stimulation of the contralateral or ipsilateral ear, but ipsilateral stimulation is thought to be more effective. However, ipsilateral stimulation complicates interpretation of effects since these sounds can affect the perception of other ipsilateral sounds by mechanisms not involving olivocochlear efferents. We assessed the ipsilaterally evoked MOCR in human using a transtympanic procedure to record mass-potentials from the cochlear promontory or the niche of the round window. Averaged compound action potential (CAP) responses to masked probe tones of 4 kHz with and without a precursor (designed to activate the MOCR but not the stapedius reflex) were extracted with a polarity alternating paradigm. The masker was either a simultaneous narrow band noise masker or a short (20-ms) tonal ON- or OFF-frequency forward masker. The subjects were screened for normal hearing (audiogram, tympanogram, threshold stapedius reflex) and psychoacoustically tested for the presence of a precursor effect. We observed a clear reduction of CAP amplitude by the precursor, for different masking conditions. Even without an MOCR, this is expected because the precursor will affect the response to subsequent stimuli via neural adaptation. To determine whether the precursor also activated the efferent system, we measured the CAP over a range of masker levels, with or without precursor, and for different types of masker. The results show CAP reduction consistent with the type of gain reduction caused by the MOCR. These results generally support psychoacoustical paradigms designed to probe the efferent system as indeed activating the MOCR system, but not all observations are consistent with this mechanism.

Highlights

  • An important property of the cochlea is the ability to “amplify” the mechanical vibrations at the basilar membrane (Dallos, 2008)

  • Human OAE data suggest that there is little difference between the size of ipsilateral and contralateral medial olivocochlear (MOC) reflexes (Guinan, 2006), more recent data show larger effects for ipsilateral elicitors under certain conditions (Lilaonitkul and Guinan, 2009, 2012). It appears that the expected difference between reduction by neural masking and reduction in gain by the MOCR is more subtle and less clear than expected

  • Comparison between ON- and OFFfrequency maskers showed a larger reduction by a precursor for OFF than for ON-frequency, consistent with gain reduction

Read more

Summary

Introduction

An important property of the cochlea is the ability to “amplify” the mechanical vibrations at the basilar membrane (Dallos, 2008). This process is under the control of the medial olivocochlear (MOC) system via efferent fibers that innervate the outer hair cells. Activation of these efferents, called the MOC reflex (MOCR), hyperpolarizes the outer hair cells (Fuchs, 2002) and decreases the cochlear gain in anesthetized animals (Buno, 1978; Dolan and Nuttall, 1988; Liberman, 1989; Warren and Liberman, 1989; Kawase and Liberman, 1993; Guinan and Stankovic, 1996). Further elucidation of the role of the MOCR requires a combination of behavioral and physiological methods

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call