Abstract

Fault current limiting high-temperature superconductor (FCL-HTS) cable not only provides effective power transmission, but also reduces the negative impact of fault current. As the demand grows rapidly, distributed generation (DG) is being implemented into the power grids. The integration of DG into the existing power grid causes an increase in short circuit current. In order to facilitate reliable planning and operation of future power systems, power system planners and operators will need to avoid the potential threat of increased fault current. The superconductor cable is considered as an enabling technology because it can raise power transmission capability and effectiveness with minimal loss. However, high fault current through the superconductor cable may seriously damage the power system. However, FCL-HTS cables can reduce the impact from unexpected high fault current. The FCL-HTS cable helps avoid interruption and voltage sag without harming existing coordination of protection devices. This study addresses the power quality issues for increased fault current that will be caused by the DG. We also analyze the response of FCL-HTS cable in perspective of power quality, when the fault occurs with DG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.