Abstract

Classical information theory can be used to quantify the resolution performance of optical imaging systems. When an optical parametric amplifier (OPA) operated as a phase-sensitive amplifier (PSA) in the transverse spatial domain is used for point source imaging, the angular resolution improvement can approach the de Broglie resolution (i.e. Heisenberg limit). In this paper, classical information theory is employed to quantify the signal-to-noise ratio (SNR) improvement for both an ideal and a realistic multimode PSA applied to the problem of sub-Rayleigh imaging. When only considering the noise originating from the detector, the SNR improvement is found to scale quadratically as a function of the PSA gain, in the limit of noise power comparable to signal power. Differences in performance of an ideal PSA and a realistic PSA are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call