Abstract
Acid mine drainage (AMD) is generally outlined as one of the largest environmental concerns, characterized by very low pH value of mine waste, heavy metals and high sulphate content. This extremely hostile environment reduces plant ability to develop and grow. Present study focuses on a silver birch (Betula pendula Roth), a pioneer species that grows on an extremely hostile gold mine waste, to investigate the bioaccumulation of rare metals (thallium (Tl) and indium (In)), as well as nine other more common heavy metals (bismuth (Bi), cadmium (Cd), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), silver (Ag) and zinc (Zn)), and to asses phytoextraction and phytostabilization potential of silver birch. Additionally, parameters determining AMD process and overall contamination (pH, electrical conductivity (EC), sulphates (SO42-), arsenic (As), iron (Fe), oxidation-reduction potential (ORP), turbidity, dissolved oxygen (DO), total dissolved solids (TDS), acidity, hardness, X-ray diffraction (XRD) and radioactivity) were determined in mine waste and drainage water samples. To assess the heavy metals bioaccumulation and mine waste status, statistical geochemical indices were determined: bioaccumulation factor (BCF), pollution load index (PLI), geochemical abundance index (GAI) and exposure index (EI). The results show that silver birch bioaccumulates the essential elements Cu, Ni, Mn and Zn, and the nonessential elements Tl (average BCF = 24.99), In (average BC = 23.01) and Pb (average BCF = 0.84). Investigated mine waste was enriched by Bi, Ag and Cd according to positive values of GAI index. Present research provides a novel insight into bioaccumulation of nonessential heavy metals in silver birches who grow on the extremely hostile mine waste, and they exhibit significant phytoremediation potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.