Abstract
The severity of grassland degradation near Lake Qinghai, West China was assessed from a Landsat Thematic Mapper (TM) image in conjunction with in situ samples of per cent grass cover and proportion (by weight) of unpalatable grasses (PUG) collected over 1 m2 sampling plots. Spectral reflectance at each sampling plot was measured with a spectrometer and its location determined with a Global Positioning System (GPS) receiver. After radiometric calibration, the TM image was geometrically rectified. Ten vegetation indices were derived from TM bands 3 and 4, and from the spectral reflectance data at wavelengths corresponding most closely to those of TM3 and TM4. Regression analyses showed that NDVI and SAVI are the most reliable indicators of grass cover and PUG, respectively. Significant relationships between TM bands-derived indices and in situ sampled grass parameters were established only after the former had been calibrated with in situ reflectance spectra data. Through the established regression models the TM image was converted into maps of grass cover parameters. These maps were merged to form a degradation map at an accuracy of 91.7%. It was concluded that TM imagery, in conjunction with in situ grass samples and reflectance spectra data, enabled the efficient and accurate assessment of grassland degradation inside the study area.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have