Abstract

Background: Physical activity (PA) interventions, designed to increase exposure to ground reaction force (GRF) loading, are a common target for reducing fracture risk in post-menopausal women with low bone mineral density (BMD). Unfortunately, accurate tracking of PA in free-living environments and the ability to translate this activity into evaluations of bone health is currently limited.Research question: This study evaluates the effectiveness of ankle-worn accelerometers to estimate the vertical GRFs responsible for bone and joint loading in post-menopausal women at a range of self-selected walking speeds during barefoot walking.Methods: Seventy women, at least one year post-menopause, wore Actigraph GT3X + on both ankles and completed walking trials at self-selected speeds (a minimum of five each at fast, normal and slow walking) along a 30 m instrumented walkway with force plates and photocells to measure loading and estimate gait velocity. Repeated measures correlation analysis and step-wise mixed-effects modelling were performed to evaluate significant predictors of peak vertical GRFs normalized to body weight (pVGRFbw), including peak vertical ankle accelerations (pVacc), walking velocity (Velw) and age.Results: A strong repeated measures correlation of r = 0.75 (95%CI [0.71-0.76] via 1000 bootstrap passes) between pVacc and pVGRFbw was observed. Five-fold cross-validation of mixed-model predictions yielded an average mean-absolute-error (MAE[95%CI]) and root-mean-square-error (RMSE) rate of 5.98%[5.61–6.42] and 0.076 [0.069-0.082] with a more complex model (including Velw,) and 6.80%[6.37–7.54] and 0.087BW[0.081-0.095] with a simpler model (including only pVacc), when comparing accelerometer-based estimations of pVGRFbw to force plate measures of pVGRFbw. Age was not found to be significant.Significance: This study is the first to show a strong relationship among ankle accelerometry data and high fidelity lower-limb loading approximations in post-menopausal women. The results provide the first steps necessary for estimation of real-world limb and joint loading supporting the goals of accurate PA tracking and improved individualization of clinical interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call