Abstract

Investigations of ventilation in an immersed tunnel have recently drawn greater research attentions; however, analyses on the influence of vent design and tunnel width on ventilation performance have rarely been addressed. For the sake of the security of evacuees in an immersed tunnel fire, the influence of three vent designs and two immersed tunnel widths on mechanical ventilation performance during tunnel fires were numerically investigated using large eddy simulation. The pollutant gas flow characteristics in the tunnel after a fire were analyzed, and the pollutant gas exhaust efficiency based on the mass conservation of carbon monoxide in the smoke was proposed in this study. By comparing the smoke propagation, smoke distribution, and exhaust efficiency between three different vent designs, it was determined that the Top Vent Design has the best smoke exhaust effect, and the Sidewall Vent Design (with an activated vertical smoke screen) has a better smoke exhaust effect than the Sidewall Vent Design. The influences of the tunnel width and heat release rate of the fire on the ventilation effect were also investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call