Abstract

The tunnel width and the transverse fire’s position both impact the heat exhaust coefficient, which is a critical component of the lateral smoke exhaust in tunnel fires. In this research, the tunnel width and the transverse location of the fire source are varied to analyze the heat exhaust coefficient of lateral smoke exhaust. When tunnel width increases, there is a noticeable decrease in the longitudinal temperature of the entrained air and smoke layer in the fire plume. Furthermore, the heat exhaust coefficients are reduced. An increase in the distance between the exhaust vent and the fire source causes an increase in the proportion of hot smoke in the smoke exhaust mass flow, which increases the heat exhaust coefficient. A calculated heat exhaust coefficient was developed using the fire source’s location and the tunnel’s width as inputs, which agrees well with the simulation results. This method can predict the heat exhaust coefficient of the lateral smoke exhaust in tunnel fires. The findings of this study provide insight into how the tunnel width and the location of a transverse fire influence the heat exhaust coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call