Abstract
The contamination of ground and surface waters with per- and polyfluoroalkyl substances (PFASs) is of major concern due to their potential adverse effects on human health. The carbon–fluorine bond makes these compounds extremely stable and hardly degradable by natural processes. Therefore, methods for PFAS removal from water are desperately needed. In this context, plasma treatment of water has been proposed as an effective method with reported removal rates exceeding 90%. However, the high reactivity of plasma discharge results in the formation of many reactive species, like radicals, ozone, or even solvated electrons, which lead to a complex reaction cascade and, consequently, to the generation of a wide variety of different chemical products. The toxicological properties of these PFAS breakdown products are largely unknown. The present study focuses on a toxicological assessment of PFAS-containing plasma-treated water samples. Aqueous solutions of long-chain perfluorooctanesulfonate (PFOS) were treated with various plasma-atmospheric regimes. Subsequently, plasma-treated water samples were subjected to in vitro bioassays. Cytotoxicity and genotoxicity were assessed with the MTS assay using human liver cells (HepG2) and the Ames MPFTM assay using Salmonella Typhimurium strains. Our results demonstrate varying cyto- and genotoxic properties of water containing PFAS breakdown products depending on the atmosphere present during plasma treatment. Based on the results of this study, the atmosphere used during plasma treatment affects the toxicological properties of the treated sample. Further studies are therefore needed to uncover the toxicological implications of the different treatment parameters, including the PFAS starting compound, the atmosphere during treatment, as well as the quantity of plasma energy applied.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.