Abstract

High-entropy alloys (HEAs) represent a relatively new group of multicomponent alloys that have shown great potential for applications requiring tribological and oxidation resistant properties. Consequently, thermally sprayed coatings of different HEA chemistries have received increasing research attention. In this paper, atomized equimolar CrFeCoNi and AlCrFeCoNi feedstocks were used for high velocity air-fuel spraying (HVAF) to produce overlay coatings using two different nozzle configurations. The microstructure, phase constitution and hardness of the coatings were analyzed along with the primary aim of testing the coatings for their oxidation behavior. The performance of the two HEA chemistries was compared with two commercial MCrAlY coatings that are well-established bond coat materials for thermal barrier coatings (TBCs). An investigation was conducted to test the coatings’ performance as bond coats by applying suspension plasma sprayed yttria-stabilized zirconia top coats and evaluating the thermal cycling behavior of the TBCs. The AlCrFeCoNi-coating was found to demonstrate a lower oxidation rate than the CrFeCoNi-coating. However, the AlCrFeCoNi-coating was found to form more rapid oxide scales compared with the commercial bond coat material that also contained reactive elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.