Abstract
Abstract Slantwise convection, the process by which moist symmetric instability is released, has often been linked to banded clouds and precipitation, especially in frontal zones within extratropical cyclones. Studies also suggest that the latent heat release associated with slantwise convection can lead to a spinup of surface frontogenesis, which can enhance the rapid intensification of extratropical cyclones. However, most of these studies considered only local areas or short time durations. In this study, we provide a novel statistical investigation of the global climatology of the potential occurrence of slantwise convection, in terms of conditional symmetric instability, and its relationship with precipitating systems. Using the 6-hourly ERA-Interim, two different indices are calculated, namely, slantwise convective available potential energy (SCAPE) and vertically integrated extent of realizable symmetric instability (VRS), to assess the likelihood of occurrence of slantwise convection around the globe. The degree of association is quantified between these indices and the observed surface precipitation as well as the cyclone activity. The susceptibility of midlatitude cyclones to slantwise convection at different stages of their life cycle is also investigated. As compared to the nonexplosive cyclone cases, the time evolution of SCAPE and VRS within rapidly deepening cyclones exhibit higher values before, and a more significant drop after, the onset of rapid intensification, supporting the idea that the release of symmetric instability might contribute to the intensification of storms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.