Abstract

We compare the performance of two methods, the stochastic Galerkin method and the stochastic collocation method, for solving partial differential equations (PDEs) with random data. The stochastic Galerkin method requires the solution of a single linear system that is several orders larger than linear systems associated with deterministic PDEs. The stochastic collocation method requires many solves of deterministic PDEs, which allows the use of existing software. However, the total number of degrees of freedom in the stochastic collocation method can be considerably larger than the number of degrees of freedom in the stochastic Galerkin system. We implement both methods using the Trilinos software package and we assess their cost and performance. The implementations in Trilinos are known to be efficient, which allows for a realistic assessment of the computational complexity of the methods. We also develop a cost model for both methods which allows us to examine asymptotic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.