Abstract

An assessment of climate impacts in the hydrologic system of the Blue Nile basin is useful for enhancing water management planning and basin-wide policymaking. Climate change adaptation activities predominantly require an understanding of the range of impacts on the water resource. In this study, we assessed climate change impacts on the Blue Nile River using 30-year in situ climate data (1981–2010) and five bias-corrected General Circulation Models (GCMs) for future (2026–2045) climate projections of RCP8.5. Both historical and GCM precipitation projections show inter-annual and spatial variability, with the most significant increases in the rainy season and a significant decrease in the dry season. The results suggest the probability of an increase in total precipitation. The intensity and frequency of future extreme rainfall events will also increase. Moreover, the hydrological model simulation results show a likely increase in total river flow, peak discharges, flood inundation, and evapotranspiration that will lead to a higher risk of floods and droughts in the future. These results suggest that the operation of water storage systems (e.g., the Grand Ethiopian Renaissance Dam) should be optimized for Disaster Risk Reduction (DRR) and irrigation management in addition to their intended purposes in the Nile basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call